KENDRION

Inhaltsverzeichnis

1.	Allgemeines	3
1.1	Vorwort	3
1.2	Normen und Richtlinien	3
1.3	Einbauerklärung (nach Anhang II, Teil 1, Abschnitt B der EG-Maschinenrichtlinie 2006/42/EG)	3
1.4	EU-Konformitätserklärung	4
1.5	Haftung	4
2.	Produktbeschreibung	5
2.1	Wirkungsweise	5
2.2	Aufbau Typ 86 611P00 mit Anker 200	5
2.3	Aufbau Typ 86 611K00 mit Anker 300	6
2.4	Aufbau Typ 86 611P00 mit Anker 400 bzw. 500	7
3.	Montage	8
3.1	Mechanische Montage	8
3.2	Elektrischer Anschluss und Betrieb	10
3.2.1	Gleichstromanschluss	10
3.2.2	Wechselstromanschluss	11
3.3	Elektromagnetische Verträglichkeit	13
3.4	Inbetriebnahme	15
4.	Wartung	16
4.1	Prüfungen, Service	16
4.2	Ersatzteile, Zubehör	17
5.	Lieferzustand, Transport und Lagerung	17
6.	Emissionen	17
6.1	Geräusche	17
6.2	Wärme	17
7.	Störungssuche	18
8.	Sicherheitshinweise	19
8.1	Bestimmungsgemäße Verwendung	19
8.2	Allgemeine Sicherheitshinweise	19
8.2.1	Projektierung	20
8.2.2	Inbetriebnahme	20
8.2.3	Montage	
8.2.4	Betrieb/Gebrauch	
8.2.5	Wartung, Reparatur und Austausch	
8.3	Verwendete Zeichen für Sicherheitshinweise	22
9.	Definitionen der verwendeten Ausdrücke	23
10.	Technische Daten	
11.	Artikelnummer und Typen- bzw. Komponentennummer	
12.	Fachwerkstätten für Reparaturarbeiten	28
13.	Änderungshistorie	28

Dokumenteninformation:

Verfasser: Kendrion (Villingen) GmbH

Ersatz für Dokument: -

Dokumententyp: Originalbetriebsanleitung Dokumentenbezeichnung: BA 86 611..P00 Ausgabe: 13.03.2020

Ersetzt Ausgabe: 04.02.2019
Dokumentenstatus: Freigegeben

1. Allgemeines

1.1 Vorwort

Diese Betriebsanleitung erläutert die Funktionsweise und Leistungsmerkmale der High Torque Bremsen Typen 86 611..P00 und 86 611..K00. Bei der Projektierung der Maschine (z.B. Motor) oder Anlage sowie bei Inbetriebnahme, Einsatz und Wartung der High Torque Bremse sind die in dieser Betriebsanleitung enthaltenen Sicherheitshinweise unbedingt zu beachten.

Bei Unklarheiten sind Drehmomente und deren Schwankung, Einbausituation, Verschleiß und Verschleißreserve, Schaltarbeit, Einlaufbedingungen, Öffnungsbereich (Lüftbereich), Umweltbedingungen und dergleichen im Voraus mit Kendrion (Villingen) abzustimmen. High Torque Bremsen sind nicht verwendungsfertige Produkte. Sie werden im Folgenden **Komponenten** genannt.

1.2 Normen und Richtlinien

Die Komponenten sind gebaut, geprüft und ausgelegt nach dem aktuellen Stand der Technik, insbesondere nach den Bestimmungen für elektromagnetische Geräte und Komponenten (DIN VDE 0580).

High Torque Bremsen fallen als "elektromagnetische Komponenten" zusätzlich in den Anwendungsbereich der Niederspannungsrichtlinie 2014/35/EU. Die Einhaltung der EMV-Richtlinie 2014/30/EU ist mit entsprechenden Schaltgeräten bzw. Ansteuerungen vom Anwender sicherzustellen.

1.3 Einbauerklärung (nach Anhang II, Teil 1, Abschnitt B der EG-Maschinenrichtlinie 2006/42/EG)

Hiermit erklären wir, dass die unten angeführten Produkte den folgenden grundlegenden Sicherheits- und Gesundheitsschutzanforderungen nach Anhang I der EG-Maschinenrichtlinie 2006/42/EG entsprechen:

Anhang I Allgemeine Grundsätze und Kapitel 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.5.1

Die Inbetriebnahme der unvollständigen Maschine ist solange untersagt, bis festgestellt wurde, dass die Maschine in die die unvollständige Maschine eingebaut werden soll, den Bestimmungen der EG-Maschinenrichtlinie 2006/42/EG entspricht. Die zur unvollständigen Maschine gehörenden speziellen technischen Unterlagen gemäß Anhang VII, Teil B der EG-Maschinenrichtlinie 2006/42/EG wurden erstellt. Der Hersteller verpflichtet sich, auf begründetes Verlangen einzelstaatlichen Stellen, die speziellen technischen Unterlagen zur unvollständigen Maschine elektronisch zu übermitteln.

Hersteller: Kendrion (Villingen) GmbH Dokumentations- Dominik Hettich

Wilhelm-Binder-Straße 4-6 **bevollmächtigter:** Kendrion (Villingen) GmbH 78048 Villingen-Schwenningen Wilhelm-Binder-Straße 4-6

Wilhelm-Binder-Straße 4-6 78048 Villingen-Schwenningen

Angewendete harmonisierte Normen bzw. sonstige technische Normen und Vorschriften:

EN 60529 Schutzarten durch Gehäuse

DIN VDE 0580 Elektromagnetische Geräte und Komponenten

Produkt: High Torque (Permanentmagnet-Einflächenbremse)

Typen: 86 61104P00 86 61106P00 86 61108P00

86 61109P00 86 61111P00 86 61114P00 86 61104K00 86 61106K00 86 61108K00 86 61109K00 86 61111K00 86 61114K00

Kendrion (Villingen) GmbH Villingen, den 13.03.2020

Dominik Hettich (Leiter Entwicklung)

1.4 EU-Konformitätserklärung

Diese EU-Konformitätserklärung gilt für Produkte, die mit einer CE- Kennzeichnung auf dem Typen- bzw. Leistungsschild gekennzeichnet sind.

Hiermit erklären wir, dass die nachstehend bezeichneten Produkte in Konzeption und Bauart sowie die in Verkehr gebrachten Ausführungen den Bestimmungen der genannten Richtlinien 2014/35/EU (Niederspannungsrichtlinie) und 2011/65/EU (RoHS-Richtlinie) entsprechen. Gemäß der Richtlinie 2011/65/EU (RoHS-Richtlinie) sind die Produkte der Gerätekategorie 11 zugeordnet. Bei einer mit uns nicht abgestimmten Änderung des Produktes verliert diese Erklärung ihre Gültigkeit.

Hersteller: Kendrion (Villingen) GmbH Bevollmächtigter: Dominik Hettich

Wilhelm-Binder-Straße 4-6
78048 Villingen-Schwenningen
Kendrion (Villingen) GmbH
Wilhelm-Binder-Straße 4-6
78048 Villingen-Schwenningen

Angewendete harmonisierte Normen bzw. sonstige technische Normen und Vorschriften:

EN 60529 Schutzarten durch Gehäuse

DIN VDE 0580 Elektromagnetische Geräte und Komponenten

Produkt: High Torque (Permanentmagnet-Einflächenbremse)

 Typen:
 86 61104P00
 86 61106P00
 86 61108P00

 86 61109P00
 86 61111P00
 86 61114P00

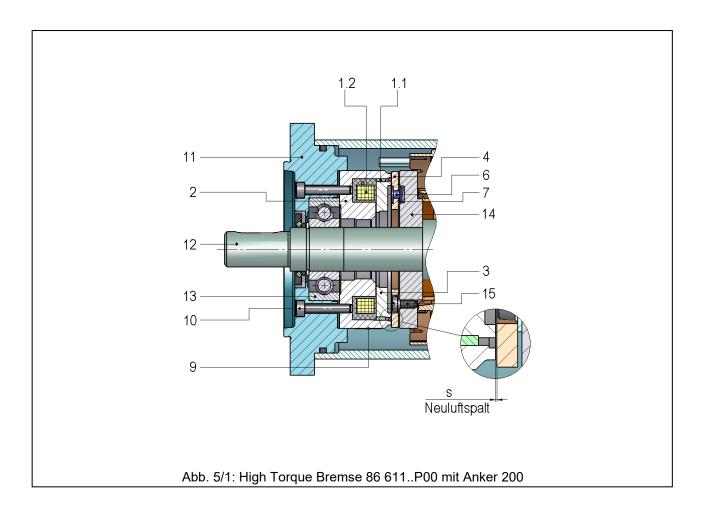
 86 61104K00
 86 61106K00
 86 61108K00

 86 61109K00
 86 61111K00
 86 61114K00

Dominik Hettich (Leiter Entwicklung)

1.5 Haftung

Werden die Komponenten nicht ordnungsgemäß, bestimmungsgemäß und gefahrlos verwendet, wird keine Haftung für daraus entstehende Schäden übernommen. Die Angaben in der Betriebsanleitung waren bei Drucklegung auf dem neuesten Stand. Aus den Angaben können keine Ansprüche auf bereits gelieferte Komponenten geltend gemacht werden.

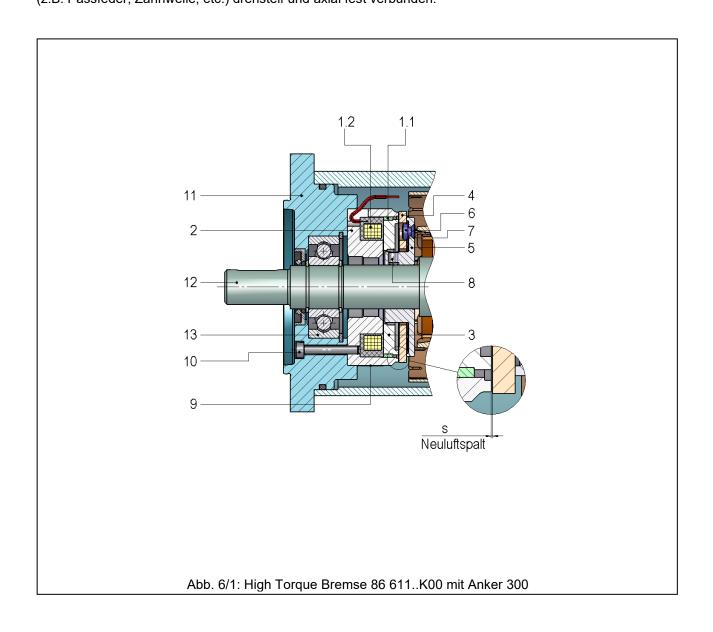

2. Produktbeschreibung

2.1 Wirkungsweise

Die High Torque Bremse ist eine Komponente für Trockenlauf, bei der die Kraftwirkung eines permanentmagnetischen Feldes für die Erzeugung der Bremswirkung ausgenutzt wird. Zum Aufheben der Bremswirkung wird das permanentmagnetische Feld durch ein elektromagnetisches Gegenfeld überlagert (elektromagnetisch öffnendes System). Durch die spielfreie Verbindung des Ankers mit der Flanschnabe der Bremse ist eine spielfreie Übertragung des Bremsmoments auf die Welle der Maschine (z.B. Motor) und ein sicheres restmomentfreies Öffnen (Lüften) der High Torque Bremse sichergestellt, wodurch die Bremse speziell für den Einbau in Servomotoren geeignet ist.

2.2 Aufbau Typ 86 611..P00 mit Anker 200

Abb. 5/1: Zwischen dem Gehäuse (2) und dem Flansch (3) der High Torque Bremse befindet sich die fest eingebaute Erregerwicklung (1.2) deren Anschlusslitzen am definierten Litzenausgang (siehe Offertzeichnungen der jeweiligen Typen) der Bremse herausgeführt sind. Die zwischen dem Gehäuse (2) und dem Flansch (3) radial angeordneten Permanentmagnete (1.1) erzeugen das magnetische Feld, welches zum Aufbau der Bremswirkung genutzt wird. Der Anker (4) ist mit dem Verbindungselement (14) (nicht im Lieferumfang) über Federn (7) und den Befestigungen (15) (Schrauben, Nieten, etc.) axial beweglich, drehsteif und reibungsfrei zu verbinden. Dadurch wird im Waagrecht- und Senkrechtlauf Restmomentfreiheit erreicht. Der Neuluftspalt s zwischen dem Anker (4) und dem Gehäuse (2) der High Torque Bremse ist bei der Montage der Bremse laut jeweiliger Offertzeichnung einzustellen. Das Verbindungselement (14) ist mit der Welle der Maschine (z.B. Motor) drehsteif und axial fest zu verbinden. Unter dem Einfluss des permanentmagnetischen Feldes wird der Anker (4) kraftschlüssig gegen das Gehäuse (2) und Flansch (3) gepresst. Die daraus resultierende Reibkraft erzeugt das Bremsmoment. Beim Anlegen einer Gleichspannung an die Erregerwicklung (1.2) der High Torque Bremse wird infolge des elektromagnetischen Gegenfeldes die Kraftwirkung des permanentmagnetischen Feldes auf den Anker (4) aufgehoben und die Bremse durch Federkraft lüftet. Die abzubremsende Welle (12) erfährt außer der geringen axialen Kraft der Federn (7) keine axiale Kraft.

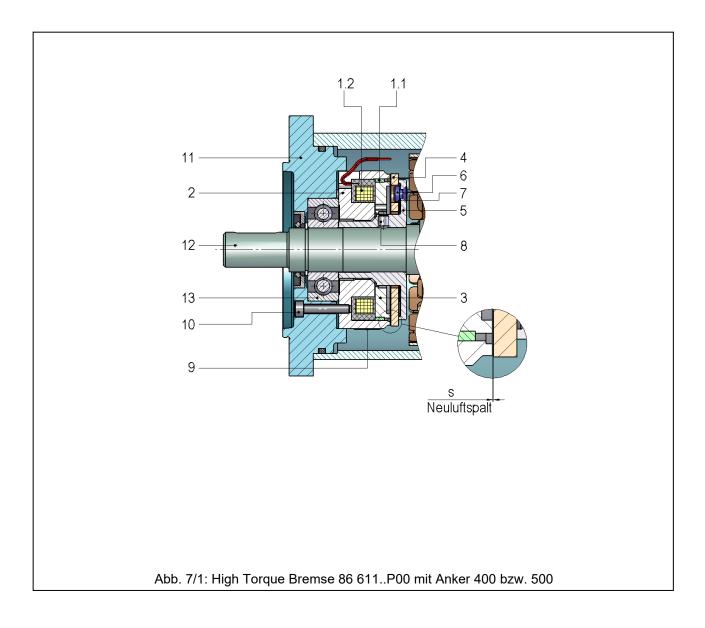


Bezug	Bezugszeichenliste zur Abb. 5/1:					
1.1	Permanentmagnet	9	Typenschild (Leistungsschild)			
1.2	Erregerwicklung	10	Befestigungsschrauben			
2	Gehäuse	11	Befestigungsfläche (z.B. Motorlagerschild)			
3	Flansch	12	Welle			
4	Anker	13	Maschinenlager (z.B. Motorlager)			
6	Befestigungsniet	14	Verbindungselement (nicht magnetisch, nicht im Lieferumfang)			
7	Feder	15	Befestigung Verbindungselement-Feder			

Tab. 6/1: Bezugszeichenliste zur High Torque Bremse mit Anker 200

2.3 Aufbau Typ 86 611..K00 mit Anker 300

Abb. 6/1: Abweichend zu Kapitel 2.2 folgender Aufbau des Typs 86 611..K00 mit Anker 300: Der Anker (4) ist mit der Flanschnabe (5) über Federn (7) und die Befestigungsniete (6) axial beweglich, drehsteif und reibungsfrei verbunden. Der Neuluftspalt s (siehe jeweilige Offertzeichnung) zwischen dem Anker (4) und dem Gehäuse (2) der High Torque Bremse des Typs 86 611..K00 ist auch hier bei der Montage der Bremse, laut jeweiliger Offertzeichnung, einzustellen. Die Flanschnabe (5) ist mit der Welle (12) der Maschine (z.B. Motor) über die Gewindestifte (8) und/oder Kombination von geeigneten Verbindungen (z.B. Passfeder, Zahnwelle, etc.) drehsteif und axial fest verbunden.



Bezug	Bezugszeichenliste zur Abb. 6/1:					
1.1	Permanentmagnet	7	Feder			
1.2	Erregerwicklung	8	Gewindestift ISO 4029 (Ersatz für DIN 916)			
2	Gehäuse	9	Typenschild (Leistungsschild)			
3	Flansch	10	Befestigungsschrauben			
4	Anker	11	Befestigungsfläche (z.B. Motorlagerschild)			
5	Flanschnabe	12	Welle			
6	Befestigungsniet	13	Lager (z.B. Rillenkugellager des Motors)			

Tab. 7/1: Bezugszeichenliste zur High Torque Bremse mit Anker 300

2.4 Aufbau Typ 86 611..P00 mit Anker 400 bzw. 500

Abb. 7/1: Abweichend zu Kapitel 2.2 folgender Aufbau des Typs 86 611..P00 mit Anker 400 bzw. 500: Der Anker (4) ist mit der Flanschnabe (5) über Federn (7) und den Befestigungsniete (6) axial beweglich, drehsteif und reibungsfrei verbunden. Der Neuluftspalt s (siehe jeweilige Offertzeichnung) zwischen dem Anker (4) und dem Gehäuse (2) der High Torque Bremse des Typs 86 611..P00 mit Anker 400 bzw. 500 wird bei der Montage der Bremse (z.B. über Einbautoleranzen) eingestellt. Die Flanschnabe (5) ist mit der Welle (12) der Maschine (z.B. Motor) über die Gewindestifte (8) und/oder Kombination von geeigneten Verbindungen (z.B. Passfeder, Zahnwelle, etc.) drehsteif und axial fest verbunden.

Bezug	Bezugszeichenliste zur Abb. 7/1:					
1.1	Permanentmagnet	7	Feder			
1.2	Erregerwicklung	8	Gewindestift ISO 4029 (Ersatz für DIN 916)			
2	Gehäuse	9	Typenschild (Leistungsschild)			
3	Flansch	10	Befestigungsschrauben			
4	Anker	11	Befestigungsfläche (z.B. Motorlagerschild)			
5	Flanschnabe	12	Welle			
6	Befestigungsniet	13	Lager (z.B. Rillenkugellager des Motors)			

Tab. 8/1: Bezugszeichenliste zur High Torque Bremse mit Anker 400 und 500

3. Montage

3.1 Mechanische Montage

Nach Zentrierung des Erregersystems der Bremse mit dem Motorlagerschild (11) über Außendurchmesser des Gehäuses (2) der Bremse, wird die gesamte Einheit mit Befestigungsschrauben (10) (z.B. Zylinderschrauben nach ISO 4762; Festigkeitsklasse 8.8) an das Motorlagerschild (11) angeschraubt. Die Befestigungsschrauben (10) dürfen dabei nicht einseitig angezogen werden und die maximale Einschraubtiefe (siehe jeweilige Offertzeichnung) darf nicht überschritten werden. Die Befestigungsschrauben (10) sind geeignet zu sichern. Die Anzugsmomente MA (siehe Tab. 8/1) der Befestigungsschrauben (10) und der Gewindestifte (8) sind unbedingt zu beachten und mit einem Drehmomentschlüssel aufzubringen. Die Flanschnabe (5) mit Anker (4) ist auf die Welle (12) des Motors aufzuschieben und axial mit den Gewindestiften ISO 4029; Festigkeitsklasse 45H (8) zu sichern. Wird ein Anker 200 verwendet, so ist eine ausreichende Befestigung des Ankers 200 mit dem Verbindungselement (14) und die Verbindung der Welle der Maschine (z.B. Motor) mit dem Verbindungselement (14) zu gewährleisten. Es ist sicherzustellen, dass das Verbindungselement (14) mit der Welle der Maschine (z.B. Motor) drehsteif, zentrisch und axial fest verbunden wird. Die Befestigung des Ankers 200 mit dem Verbindungselement (14) ist drehsteif, zentrisch, reibungsfrei und axial beweglich mittels geeigneter Federn (7) auszuführen. Wie diese Befestigung bewerkstelligt wird, liegt in der Verantwortung des Anwenders. Die Welle (12) des Motors und das Lagerschild (11) ist von den Abmessungen so zu gestalten, dass bei der Montage des Lagerschildes (11) mit dem Kernstück der High Torque Bremse sich der Neuluftspalt s (siehe jeweilige Offertzeichnung) einstellt (Montage der Bremse auf Seite des vorgespannten Festlagers). Bei Bedarf ist eine Anpassung mittels Passscheiben zwischen der Anschlagfläche der Welle (12) und der Planfläche der Flanschnabe (5) vorzunehmen. Kendrion (Villingen) empfiehlt eine Welle (12) aus E335 nach DIN EN 10025 $(R_m = 570-710N/mm^2 => 180-220HV)$ mit einer Rautiefe von $R_z = 4$ und einem Toleranzfeld x8 im Bereich des möglichen Pressverbandes.

		Größ	e Befes	stigung	sschraul	oe Festiç	gkeitskl	asse 8.	8 (10)	
	М3	M4	M5	М6	M8	M10	M12	M16	M20	M24
Anzugsmomente M _A Befestigungs-schrauben (10) [Nm]	1,2	3	5	9	24	42	70	165	400	640
	Größe Gewindestift ISO 4029 mind. Festigkeitsklasse 45H (8))				
	M3	M4	ļ.	M5	М6	M8	M1	0 1	M12	M16
Anzugsmomente M _A Gewindestift (8) [Nm]	0,9	2		4	6,8	16	33	3	52	135

Tab. 8/1: Anzugsmomente M_A (Befestigungsschrauben (10), Gewindestifte (8))

Hinweis:

Die Planlaufabweichung der Polflächen der Komponente nach dem Anschrauben gegenüber der Welle (12) (z.B. Motorwelle) der Maschine (z.B. Motor) darf max. 0,05mm betragen.

Warnung:

Das Gehäuse (2) darf bei der Montage der Bremse nicht verformt werden (z.B. durch erhöhtes Anzugsmoment der Befestigungsschrauben (10)), da Verformungen evtl. zu Beeinträchtigungen der Bremsmomente führen können.

Vorsicht:

Die Befestigungsschrauben (10) und die Gewindestifte (8) dürfen nicht einseitig angezogen werden. Die Anzugsmomente M_A (siehe Tab. 8/1) der Befestigungsschrauben (10), der Gewindestifte (8) (siehe Tab. 8/1) sind zu beachten. Die Länge der Gewindestifte (8) ist so zu dimensionieren, dass es beim Betrieb der Bremse zu keiner Berührung bzw. keinem Steifen zwischen den Gewindestiften (8) und dem Flansch (3) kommen kann. Die Befestigungsfläche (11) z.B. Motorlagerschild ist so zu dimensionieren, dass keine Beeinträchtigung der jeweiligen Schraubenverbindung z.B. durch Setzen eintritt.

Warnung:

Übertragung Bremsmomente über die Flanschnabe (5) auf die Welle (12) der Maschine (z.B. Motor): Bei aufgepresster Flanschnabe (5) und Sicherung der Gewindestifte (8) ist die Toleranz der Welle (12) sowie die Art des Gewindestiftes (8) (z.B. Gewindestifte mit Innensechskant nach ISO 4029; Festigkeitsklasse 45H) so zu wählen, dass die erzeugten Bremsmomente mit ausreichender Sicherheit übertragen werden können. Die Gewindestifte (8) sind mit einer Losdrehsicherung zu versehen (z.B. mikroverkapselte Gewindestifte) welche die Anforderungen der DIN 267-28 erfüllen. Rückstände von Klebstoffen o.ä. dürfen auch während des Betriebes, insbesondere bei der maximalen zulässigen Drehzahl n_{max} (siehe jeweilige Offerte) nicht auf die Polflächen gelangen. Es ist darauf zu achten, dass die Gewindestifte (8) nicht aus den Gewindebohrungen der Flanschnabe (5) herausragen und die tragende Gewindelänge der Gewindestifte (8) so bemessen ist, dass das Anzugsmoment M_A dauerhaft sicher übertragen werden kann. Das Versagen der Gewindebohrung ist auszuschließen. Evtl. sind auf der Welle (12) konstruktive Maßnahmen vorzusehen, die ein Überstand der Gewindestifte (8) verhindern (z.B. durch einen Einstich auf der Welle (12)).

Hinweis:

Bei der Montage der Bremse ist unbedingt darauf zu achten, dass sämtliche Bauteile axial fixiert sind und keine axiale Lagerluft vorhanden ist. Dabei muss der Innenring des Lagers (13) (z.B. Motorlager) mittels geeigneter Bauelemente unter Vorspannung gehalten werden. Es ist sicherzustellen, dass aus dem Lager (13) (z.B. Motorlager) keine Gleitmittel bzw. Schmiermittel in die Komponente eindringen können (z.B. durch abgedichtete Lager).

Hinweis:

Fremde Magnetfelder können die Funktion der Komponente einschränken. Die Komponente sollte deshalb außerhalb dem Einflussbereich fremder Magnetfelder platziert werden. Die montierten Bauteile, insbesondere die Reibfläche müssen fett- und ölfrei sein. Bei der Montage der Flanschnabe (5) mit Anker (4) darf die Ankerfeder (7) nicht verformt werden. Der Neuluftspalt s (siehe Tab. 25/1) darf nicht über- bzw. unterschritten werden.

3.2 Elektrischer Anschluss und Betrieb

Die High Torque Bremse ist an geglättete Gleichspannung nach Tab. 10/1 anzuschließen. Eine Versorgung über Brückengleichrichter (siehe Tab. 10/2) ist aber ebenfalls möglich.

Anschlusslitzen	Polarität
Blaue Anschlusslitze der Bremse	-
Rote Anschlusslitze der Bremse	+

Tab. 10/1: Polarität der Anschlusslitzen

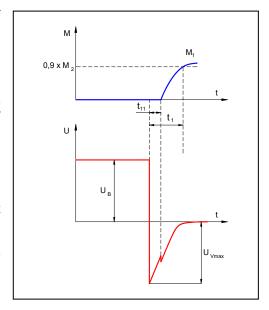
Hinweis:

Zur einwandfreien Funktion der High Torque Bremse ist auf die richtige Polarität (siehe Tab. 10/1) der Anschlusslitzen zu achten. Die Anschlusslitzen dürfen im Betrieb nicht mit dem rotierenden Anker oder anderen rotierenden Teilen in Berührung kommen, ggf. kürzen.

Zum direkten Anschluss an ein Wechselstromnetz stehen diverse Gleichrichtertypen (siehe Tab. 10/2, Auszug) zur Verfügung. Welligkeiten der Spannung durch getaktete Versorgungen können je nach Größe und Momenten zu Brummen oder zu einem nicht bestimmungsgemäßen Betriebsverhalten der Komponente führen. Der Anwender oder Systemhersteller hat durch die elektrische Ansteuerung den bestimmungsgemäßen Betrieb zu gewährleisten.

Gleichrichtertyp	Gleichrichterart	Nenneingangsspannungs- bereich U ₁ /VAC (40-60Hz)	Ausgangsspannung U ₂ /VDC	Max. Ausgar R-Last I/ADC	ngsstrom L-Last I/ADC		
32 07.23B.0	Brücke	0-400 (±10%)	U₁ • 0,890	1,6	2,0		
32 07.03B0.	Brücke	0-500 (±10%)	U ₁ • 0,890	1,6	2,0		
Bitte Datenblätter der jeweiligen Gleichrichtertypen beachten							

Tab. 10/2: Empfohlene Gleichrichter zum Betrieb an Einphasen-Wechselspannung


3.2.1 Gleichstromanschluss

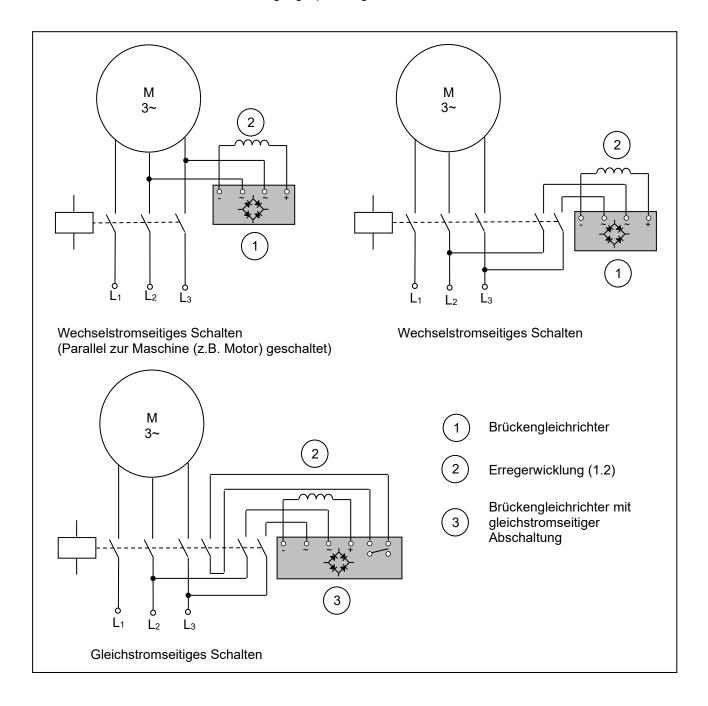
Der prinzipielle Verlauf der Spannung beim Abschalten der Erregerwicklung (Spule) (1.2) entspricht nebenstehender Kurve.

Achtung:

Die Spannungsspitze U_{Vmax} während des Abschaltens kann ohne Schutzbeschaltung im Millisekunden-Bereich **mehrere 1000V** erreichen. Die Erregerwicklung (Spule) (1.2), Schaltkontakte und elektronische Bauteile können zerstört werden. Beim Abschalten kommt es zu Funkenbildung am Schalter. Beim Abschalten muss daher der Strom über eine Schutzbeschaltung abgebaut werden, dabei werden dann auch Spannungen begrenzt. Die max. zulässige Überspannung beim Abschalten darf 1500V nicht überschreiten. Bei Verwendung von Kendrion Gleichrichtern (siehe Tab. 10/2) ist die Schutzbeschaltung für die internen elektronischen Bauteile und für die Erregerwicklung (Spule) (1.2) integriert. Dies gilt nicht, für die zum gleichstromseitigen Schalten erforderlichen externen Kontakte, da die galvanische Trennung des externen Kontakts dann nicht mehr erreicht wird.

U_B Betriebsspannung (Spulenspannung) U_{Vmax} Abschaltspannung

Achtung:


Empfindliche elektronische Bauteile (z.B. Logikbauteile) können auch durch die niedrigere Spannung beschädigt werden.

3.2.2 Wechselstromanschluss

Der Anschluss direkt an Wechselspannung ist nur über Brückengleichrichter möglich. Die Beschaltung bei Einphasen-Wechselspannung ist anlog zur Drehstrombeschaltung vorzunehmen. Je nach Schaltungsart (gleichstromseitiges Schalten, bzw. wechselstromseitiges Schalten) sind unterschiedliche Einkuppelzeiten (nach DIN VDE 0580) bzw. Aktivierungszeiten (nach TKU 86 611..P01) erreichbar.

Brückengleichrichtung:

Brückengleichrichter liefern eine Spannung mit geringer Restwelligkeit, so dass auch bei kleinen Baugrößen ein Brummen der Bremse vermieden wird. Bei Brückengleichrichtung ergibt sich eine Spulenspannung U₂ die um den Faktor 0,89 kleiner ist als die Eingangsspannung am Gleichrichter.

Wechselstromseitiges Schalten:

Die einfachste Art der Beschaltung ergibt sich durch paralleles Anschließen von Gleichrichter und Bremse im Klemmenkasten der Maschine (z.B. Motor). Bei dieser Beschaltung ist jedoch zu berücksichtigen, dass der Motor nach Abschalten als Generator wirkt und so die Einkuppelzeiten (nach DIN VDE 0580) bzw. die Aktivierungszeiten (nach TKU 86 611..P01) erheblich verlängern kann (mindestens Faktor 5). Die Trennzeiten (nach DIN VDE 0580) bzw. Öffnungszeiten (nach TKU 86 611..P01) werden nicht verlängert.

Gleichstromseitiges Schalten:

Bei gleichstromseitiger Schaltung der Bremse wird z.B. am Motorschütz ein zusätzlicher Hilfskontakt aufgesteckt, der die Stromzuführung zur Bremse auf der Gleichstromseite unterbricht.

Achtung:

Bei gleichstromseitiger Schaltung muss die Bremse mit einer Schutzbeschaltung betrieben werden, um unzulässige Überspannungen zu vermeiden. Um Schädigungen (z.B. Abbrand, Kontaktverschweißung) der externen Schaltglieder zu vermeiden, sind zusätzliche Schutzmaßnahmen (z.B. Varistoren, Funklöschglieder, etc.) vorzusehen.

Warnung:

Alle Arbeiten dürfen nur von qualifiziertem Fachpersonal ausgeführt werden. Elektrischen Anschluss nur im spannungsfreien Zustand durchführen. Typenschildangaben sowie das Schaltbild im Klemmenkasten oder die Betriebsanleitung beachten.

Warnung:

Die Bremse ist ein Gleichstromsystem. Die dauernd zulässige Spannungsänderung an der Anschlussstelle der elektromagnetischen Komponente beträgt +10% bis -10% der Nennspannung.

Grundsätzlich ist beim Anschließen zu prüfen, dass

- die Anschlussleitungen der Verwendungsart, den auftretenden Spannungen und Stromstärken angepasst sind.
- die Anschlussleitungen durch Schrauben, Klemmverbindungen oder andere gleichwertige Mittel derart fachgerecht angeschlossen sind, dass die elektrische Verbindung dauerhaft erhalten bleibt,
- ausreichend bemessene Anschlussleitungen, Verdreh-, Zug- und Schubentlastung sowie Knickschutz für die Anschlussleitungen vorgesehen sind,
- der Schutzleiter (nur bei Schutzklasse I) am Erdungspunkt angeschlossen ist,
- sich im Klemmenkasten keine Fremdkörper, Schmutz oder Feuchtigkeit befindet,
- nicht benötigte Kabeleinführungen und der Klemmenkasten selbst so verschlossen sind, dass die vorgesehene Schutzart nach EN 60529 eingehalten wird.

3.3 Elektromagnetische Verträglichkeit

Die elektromagnetische Verträglichkeit muss nach dem EMVG bezüglich der Störunempfindlichkeit gegen von außen einwirkende elektromagnetische Felder und leitungsgebundene Störungen sichergestellt werden. Darüber hinaus muss die Aussendung elektromagnetischer Felder und leitungsgebundener Störungen beim Betrieb der Komponente limitiert werden. Aufgrund der von Beschaltung und Betrieb abhängigen Eigenschaften der Bremse ist eine Konformitätserklärung zur Einhaltung der entsprechenden EMV-Norm nur im Zusammenhang mit der Beschaltung möglich, für die einzelnen Komponenten jedoch nicht. Die High Torque Bremse 86 611..P00 bzw. 86 611..K00 ist grundsätzlich für den industriellen Einsatz vorgesehen, für den die elektromagnetische Verträglichkeit in den Fachgrundnormen EN 61000-6-2 bezüglich Störfestigkeit und EN 61000-6-3 bzw. EN 61000-6-4 für die Störaussendungen geregelt ist. Für andere Anwendungsbereiche gelten ggf. andere Fachgrundnormen, die vom Hersteller des Gesamtsystems zu berücksichtigen sind. Die elektromagnetische Verträglichkeit von Geräten oder Baugruppen wird nach Basisstandards festgestellt, die aus den Fachgrundnormen ersichtlich sind. Im Folgenden werden deshalb Beschaltungsempfehlungen für die Einhaltung der verschiedenen Basisstandards gegeben, die für den Einsatz im Industriebereich und darüber hinaus auch teilweise in anderen Anwendungsbereichen relevant sind. Zusätzliche Informationen zur elektromagnetischen Verträglichkeit insbesondere der unter Kapitel 3.2 empfohlenen elektronischen Gleichrichter, sind aus deren Datenblättern ersichtlich.

Störunempfindlichkeit nach EN 61000-4:

EN 61000-4-2 Elektrostatische Entladung:

Die High Torque Bremse 86 611..P00 bzw. 86 611..K00 entspricht mindestens dem Schärfegrad 3 ohne zusätzliche Maßnahmen. Die unter Kapitel 3.2 empfohlenen Gleichrichter entsprechen dem Schärfegrad 3 ohne zusätzliche Maßnahmen.

EN 61000-4-3 Elektromagnetische Felder:

Die Bremsen entsprechen mindestens Schärfegrad 3 ohne zusätzliche Maßnahmen. Die empfohlenen Gleichrichter entsprechen dem Schärfegrad 3 ohne zusätzliche Maßnahmen.

EN 61000-4-4 Transiente Störgrößen (Burst):

Die Bremsen entsprechen mindestens Schärfegrad 3 ohne zusätzliche Maßnahmen. Die empfohlenen Gleichrichter entsprechen dem Schärfegrad 3.

EN 61000-4-5 Stoßspannungen:

Die Bremsen entsprechen mindestens Schärfegrad 3 ohne zusätzliche Maßnahmen. Die empfohlenen Gleichrichter entsprechen dem Schärfegrad 3.

EN 61000-4-9 Impulsmagnetfelder, EN 61000-4-10 gedämpfte schwingende Magnetfelder:

Da die Arbeitsmagnetfelder der elektromagnetischen Komponenten um ein Vielfaches stärker als Störfelder sind, ergeben sich keine Funktionsbeeinflussungen. Die Bremsen entsprechen mindestens Schärfegrad 4. Die empfohlenen Gleichrichter entsprechen mindestens Schärfegrad 3.

EN 61000-4-11 Spannungseinbrüche, Kurzzeitunterbrechungen und kurzzeitige Versorgungsspannungsschwankungen:

a) Spannungsunterbrechungen:

Die Bremsen nach DIN VDE 0580 gehen spätestens nach den spezifizierten Schaltzeiten in den stromlosen Schaltzustand über, wobei die Schaltzeit von der Ansteuerung und den Netzverhältnissen (z.B. Generatorwirkung auslaufender Motoren) abhängig ist. Spannungsunterbrechungen mit kürzerer Zeitdauer als der Ansprechverzugszeit nach DIN VDE 0580 verursachen keine Fehlfunktion. Der Anwender hat sicherzustellen, dass ein Folgeschaden (z.B. Arbeit des Motors gegen die geschlossene Bremse durch evtl. noch zweiphasig bestromte Motoren bei Ausfall einer Phase oder Rutschen eines elektromagnetisch schließenden Systems infolge Drehmomentabfalls) vermieden wird. Die Funktionsfähigkeit der elektromagnetischen Komponente und des elektronischen Zubehörs bleibt erhalten, wenn o.g. Folgeschäden vermieden werden.

b) Spannungseinbrüche und kurzzeitige Versorgungsspannungsschwankungen: Elektromagnetisch öffnende Systeme:

Spannungseinbrüche und Versorgungsspannungsschwankungen auf Werte unter 60% der Nennspannung mit einer Zeitdauer größer als der Ansprechverzugszeit nach DIN VDE 0580 können zu zeitweisem Übergang in den stromlosen Schaltzustand führen. Folgeschäden wie unter a) sind durch den Anwender auf geeignete Weise zu verhindern.

Elektromagnetisch schließende Systeme:

Spannungseinbrüche und Versorgungsspannungsschwankungen wie o.g. auf Werte unterhalb der dauerhaft zulässigen Toleranzen führen zum Absinken des Drehmoments. Der Anwender hat sicherzustellen, dass ein Folgeschaden vermieden wird.

Funkentstörung nach EN 55011:

Die Bremsen und die empfohlenen elektronischen Gleichrichter sind der Gruppe 1 nach EN 55011 zugehörig. Das Störverhalten ist nach feldgebundener Störstrahlung und leitungsgebundener Störspannung zu unterscheiden.

a) Funkstörstrahlung:

Bei Betrieb mit Gleichspannung bzw. gleichgerichteter 50/60Hz-Wechselspannung entsprechen alle Komponenten den Grenzwerten der Klasse B.

b) Funkstörspannung:

Bei **Betrieb** Gleichspannung entsprechen mit die elektromagnetischen Komponenten mindestens den Grenzwerten der Klasse Α. Werden Komponenten mit elektronischen Gleichrichtern oder sonstigen elektronischen Ansteuerungen 50/60Hz-Wechselstromnetz betrieben. zur Erreichung der Grenzwerte der ggf. Entstörmaßnahmen nach Abb. 14/1 notwendig. Es wird die Verwendung von Entstörkondensatoren empfohlen, Dimensionierung elektrischen von den Anschlussdaten der elektromagnetischen Komponenten und auch von den Netzverhältnissen abhängig ist. Die

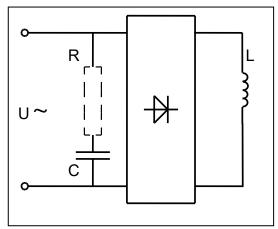


Abb. 14/1

unter Kapitel 3.2 aufgeführten empfohlenen Gleichrichter mit CE-Zeichen nach EMVRL haben bereits integrierte Entstörglieder, wenn nicht im jeweiligen Datenblatt anders angegeben ist mindestens Klasse A nach EN 55011 gewährleistet. Für den Betrieb mit den empfohlenen oder anderen Gleichrichtern sind in Tab. 15/1 die empfohlenen Werte zusammengefasst. Die Entstörung ist möglichst nahe am Verbraucher zu installieren. Störungen beim Schalten der elektromagnetischen Komponenten sind generell durch die induktive Last bedingt. Je nach Erfordernis kann eine Abschaltspannungsbegrenzung durch eine antiparallele Diode oder Bauelemente zur Spannungsbegrenzung, wie Varistoren, Suppressordioden, WD-Glieder o.a. vorgesehen werden, die jedoch Einfluss auf die Schaltzeiten der Komponenten und die Geräuschentwicklung hat. In dem unter Kapitel 3.2 aufgeführten Gleichrichter sind Freilaufdioden bzw. Varistoren zur Abschaltspannungsbegrenzungen integriert. Bei gleichstromseitiger Schaltung begrenzt ein für die jeweilige typabhängige maximale Betriebsspannung dimensionierter Varistor parallel zu der Erregerwicklung (1.2) die Spannungsspitze auf Richtwerte die in Tab. 15/2 angegeben sind.

Betreibt der Anwender die Komponenten mit anderem elektronischen Zubehör, hat er für die Einhaltung des EMV-Gesetzes Sorge zu tragen. Die Einhaltung der entsprechenden Normen über die Auslegung bzw. den Betrieb von Komponenten bzw. Baugruppen oder verwendete Geräte entbindet den Anwender bzw. Hersteller des Gesamtgeräts oder der Anlage nicht vom Nachweis der Norm-Konformität für sein Gesamtgerät oder seine Anlage.

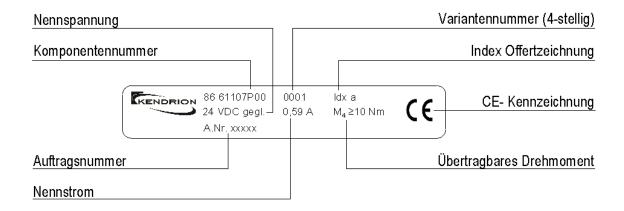
Gleichrichtertyp	Nenneingangs- spannungsbereich U ₁ /VAC (40-60Hz)	Gleichstrom bei L-Last (ADC)	Kondensator (nF(VAC)
Brückengleichrichter 32 07.23B.0	bis 400 (±10%)	bis 2,0	Keine zusätzlichen Entstörmaßnahmen erforderlich
Brückengleichrichter 32 07.03B0.	bis 230 (±10%) bis 500 (±10%)	bis 2,0 bis 2,0	47/250~ 100/500~

Tab. 15/1

Max. Betriebsspannung der Gleichrichter (VAC)	Richtwert Abschaltspannung bei gleichstromseitigem Schalten (V)
250	700
440	1200
550	1500

Tab. 15/2

3.4 Inbetriebnahme


Warnung:

Die Funktionskontrolle darf nur bei stillstehender Maschine (z.B. Motor), im freigeschalteten und gegen einschalten gesicherten Zustand durchgeführt werden.

Folgende Funktionen sind zu prüfen:

Leistungsschildangaben (Typenschild) hinsichtlich Bauform und Schutzart beachten und Übereinstimmung mit den Verhältnissen am Einbauort prüfen. Nach dem elektrischen Anschluss der Bremse ist eine Funktionskontrolle auf Freigängigkeit der Flanschnabe (5) mit Anker (4) durch Drehen an der Welle (12) bei bestromter Bremse und unbestromter Maschine (z.B. Motor) erforderlich. Nach der Aufstellung für das Anbringen evtl. vorgesehener Abdeckungen und Schutzvorrichtung sorgen.

Typenschildangaben (Daten nach Auftrag, Beispiel 86 61107P00):

Anmerkung: Die Komponentennummer und Variantennummer bilden zusammen die Artikelnummer der High Torque Bremse z.B. 86 61107P00-0001.

Warnung:

Für einen Probebetrieb der Maschine (z.B. Motor) ohne Abtriebselemente ist eine eventuell vorhandene Passfeder gegen Herausschleudern zu sichern. Dabei dürfen keine Lastmomente an der Welle (12) wirken. Vor Wiederinbetriebnahme ist die Bestromung der Bremse wieder aufzuheben.

Vorsicht:

An der Bremse können Oberflächentemperaturen >60°C auftreten. Es dürfen dort keine temperaturempfindlichen Teile, z.B. normale Leitungen oder elektronische Bauteile anliegen oder befestigt werden. Bei Bedarf sind Berührungsschutzmaßnahmen vorzusehen! Wenn bei Einrichtungsarbeiten bei abgeschalteter Maschine (z.B. Motor) die Welle (12) gedreht werden muss, ist die Bremse zu bestromen.

Achtung:

Eine Hochspannungsprüfung bei der Montage oder Inbetriebnahme in ein Gesamtsystem muss so durchgeführt werden, dass integriertes elektronisches Zubehör nicht zerstört werden kann. Darüber hinaus sind die in DIN VDE 0580 angeführten Limits für Hochspannungsprüfungen und insbesondere Wiederholungsprüfungen zu beachten.

Achtung:

Vor Inbetriebnahme ist der korrekte elektrische Anschluss entsprechend den Typenschildangaben sicherzustellen. Auch kurzzeitiger Betrieb mit Versorgungsspannung außerhalb der spezifizierten Daten kann zur Schädigung oder Zerstörung von Bremse und elektronischem Zubehör führen, der u.U. nicht sofort ersichtlich ist. Insbesondere gleichstromseitige Schaltung der Bremsen ohne Schutzglieder wie unter Kapitel 3.3 aufgeführt, führt kurzfristig zur Zerstörung nicht dafür vorgesehener elektronischen Zubehörs, der Schaltglieder selbst und der Erregerwicklung (1.2). Das Öffnungs- (Lüft-) bzw. Bremsverhalten der High Torque Bremse wird von fremden Magnetfeldern über magnetisch leitende Teile (z.B. Motorwelle (12)) beeinflusst. In diesen Fällen müssen die magnetischen Daten der Bremse werkseitig auf die jeweilige Einbausituation abgestimmt werden.

4. Wartung

4.1 Prüfungen, Service

Die High Torque Bremse ist bei definiertem Betrieb wartungsfrei. Ist der max. Luftspalt s_{max} (siehe Tab. 25/1) zwischen Anker (4) und Gehäuse (2) der High Torque Bremse erreicht, ist die Bremse durch eine neue zu ersetzen. Wurde die Bremse längere Zeit nicht geschaltet, können die Polflächen des Flansches (3) bzw. Gehäuses (2) korrodieren, was eine Drehmomentreduzierung zur Folge haben kann. Durch einen kurzen Einlauf (siehe Tab. 26/1 oder Tab. 26/2) kann der ursprüngliche Zustand der Bremse wiederhergestellt werden.

Warnung:

Beim Überschreiten des max. Luftspaltes s_{max} (siehe Tab. 25/1) kann je nach Betriebszustand eine Einschränkung oder sogar der totale Verlust der Bremswirkung (Bremsfunktion) eintreten.

Vorsicht:

Bei allen Kontroll- und Wartungsarbeiten ist sicherzustellen, dass

- kein unbeabsichtigtes Anlaufen der Maschine (z.B. Motor) erfolgen kann und kein Lastmoment an der Welle (12) wirkt,
- nach der Beendigung von Kontroll- und Wartungsarbeiten die Sperre zum unbeabsichtigten Anlaufen der Maschine (z.B. Motor) aufgehoben wird,
- Fett- und Ölfreiheit aller am Reibvorgang beteiligten Flächen sichergestellt ist,
- falls vorhanden: kein Quellen oder Verglasen des Reibbelags aufgetreten ist.

4.2 Ersatzteile, Zubehör

Die High Torque Bremse ist bei bestimmungsgemäßem Betrieb wartungsfrei. Beim defekt einzelner Bauteile bzw. der gesamten Komponente ist die Bremse vollständig zu ersetzen. Einzelne Ersatzteile oder auch Zubehör für die Bremse fallen nicht an.

5. Lieferzustand, Transport und Lagerung

Nach dem Eingang der Komponente ist eine Kontrolle auf evtl. Transportschäden vorzunehmen und ggf. eine Einlagerung auszuschließen. Die High Torque Bremse wird anbaufertig geliefert. Der Neuluftspalt s (siehe Tab. 25/1) muss bei der Montage eingestellt werden. Nach Einbau der Komponente ist ein Einlaufvorgang (Einlaufparameter siehe Tab. 26/1 oder Tab. 26/2) vorzunehmen.

Hinweis:

Das Erregersystem der Bremse und die Flanschnabe mit Anker sind ab Werk so abgestimmt, dass ein einwandfreies Öffnen (Lüften) der Bremse sichergestellt ist. Ein Austausch einzelner Bauteile ist daher nicht möglich. Wird die Komponente eingelagert, so ist auf eine trockene, staubfreie und schwingungsarme Umgebung zu achten.

Hinweis:

Für den Transport der Komponente und die Einlagerung insbesondere bei einer geplanten Langzeiteinlagerung der Komponente, sind die Umgebungsbedingungen nach Tab. 17/1 und EN IEC 60721-3-2 bzw. EN IEC 60721-3-1 zu beachten und einzuhalten. Dabei gelten die zulässigen Umgebungsbedingungen nur bei Lagerung der Komponente in Originalverpackung.

	Umgebungsbedingungen				
	Lagerung nach EN IEC 60721-3-1	Transport nach EN IEC 60721-3-2			
Mechanische Bedingungen	1M11	2M4			
Klimatische Bedingungen	1K21 und 1Z2	2K12			
Biologische Bedingungen	1B1	2B1			
Mechanisch aktive Substanzen	1811	285			
Chemisch aktive Substanzen	1C1	2C1			

Tab. 17/1: Umgebungsbedingungen für Lagerung und Transport nach EN IEC 60721-3-1 und EN IEC 60721-3-2

6. Emissionen

6.1 Geräusche

Beim Einfallen und Lüften der High Torque Bremse entstehen Schaltgeräusche, die in ihrer Intensität von der Anbausituation, der Beschaltung und vom Luftspalt abhängen. Anbausituation oder Betriebsbedingungen oder der Zustand der Reibflächen können während des Bremsvorgangs zu deutlich hörbaren Schwingungen (Quietschen) führen.

6.2 Wärme

Durch die Erwärmung der Erregerwicklung und die Verrichtung von Bremsarbeit erwärmt sich die Bremse erheblich. Bei ungünstigen Bedingungen können Oberflächentemperaturen deutlich über 60°C erreicht werden.

Vorsicht:

Bremse vor Berührung schützen. Durch die hohe Oberflächentemperatur können Verbrennungen auftreten.

7. Störungssuche

Störung	Ursache	Maßnahmen
	Luftspalt zu groß	Luftspalt kontrollieren evtl. neue Bremse montieren
	Bremse wird mit Spannung versorgt	Elektrischen Anschluss kontrollieren und gegebenenfalls Fehler beheben
Bremse schließt nicht	Spannung an der Erregerwicklung zu groß	Anschlussspannung der Erregerwicklung kontrollieren und gegebenenfalls Fehler beheben
	Gleichrichter defekt	Gleichrichter kontrollieren und gegebenenfalls austauschen
Bremse schließt mit	Luftspalt zu groß	Luftspalt kontrollieren evtl. neue Bremse montieren
Verzögerung ein	Spannung an Erregerwicklung zu groß (Restspannung)	Anschlussspannung der Erregerwicklung kontrollieren und gegebenenfalls Fehler beheben
	 Spannung an der Erregerwicklung nach Einschalten zu klein oder groß 	Spannung der Erregerwicklung auf Restspannung kontrollieren und gegebenenfalls Fehler beheben
	Reibfläche thermisch überlastet	Evtl. neue Bremse montieren
Bremse öffnet nicht	Erregerwicklung defekt	Widerstand der Erregerwicklung kontrollieren und gegebenenfalls neue Bremse montieren
	 Anker mechanisch durch Verschweißung von Anker und Innenring bzw. Außenring blockiert 	Anker und Außenring bzw. Innenring mechanisch trennen, evtl. neue Bremse montieren
Bremse öffnet mit Verzögerung	Spannung an der Erregerwicklung zu klein	Anschlussspannung der Erregerwicklung kontrollieren und gegebenenfalls Fehler beheben
	Luftspalt zu groß	Luftspalt kontrollieren evtl. neue Bremse montieren
	Betriebstemperatur der Bremse zu hoch	Schaltarbeit, Schaltleistung der Bremse reduzieren evtl. Bremse kühlen
Bremsmoment ist zu	Spannung (Restspannung) an Erregerwicklung vorhanden	Anschlussspannung der Erregerwicklung kontrollieren und gegebenenfalls Fehler beheben
klein	Falls vorhanden: Reibbelag steht gegenüber Polflächen hervor	Evtl. neue Bremse montieren
	Öl- oder fetthaltige Reibfläche	Reibflächen kontrollieren und gegebenenfalls säubern evtl. neue Bremse montieren
	 Korrodierte Reibflächen oder adhäsiver Verschleiß (Fresser) 	Einlaufvorgang nach Tab. 26/1 oder Tab. 26/2 durchführen, evtl. neue Bremse montieren

Tab. 18/1: Auszug möglicher Störungen, Störungsursachen und Abhilfemaßnahmen zur Beseitigung der aufgetretenen Störung

8. Sicherheitshinweise

Die Komponenten werden unter Berücksichtigung einer Gefährdungsanalyse und unter Beachtung der einzuhaltenden harmonisierten Normen, sowie weiterer technischer Spezifikationen konstruiert und gebaut. Sie entsprechen damit dem Stand der Technik und gewährleisten ein Höchstmaß an Sicherheit. Diese Sicherheit kann in der betrieblichen Praxis jedoch nur dann erreicht werden, wenn alle dafür erforderlichen Maßnahmen getroffen werden. Es unterliegt der Sorgfaltspflicht des Betreibers der Maschine, diese Maßnahmen zu planen und ihre Ausführung zu kontrollieren.

Der Betreiber muss insbesondere sicherstellen, dass

- die Komponenten nur bestimmungsgemäß verwendet werden (vgl. hierzu Kapitel 2 Produktbeschreibung),
- die Komponenten nur in einwandfreiem, funktionstüchtigem Zustand betrieben werden und regelmäßig auf ihre Funktionstüchtigkeit überprüft werden,
- die Betriebsanleitung stets in einem leserlichen Zustand und vollständig am Einsatzort der Komponenten zur Verfügung steht,
- nur ausreichend qualifiziertes und autorisiertes Personal die Komponenten in Betrieb nimmt, wartet und repariert.
- dieses Personal regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit und Umweltschutz unterwiesen wird, sowie die Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennt,
- die Komponenten nicht einem anderen starken Magnetfeld ausgesetzt sind.

8.1 Bestimmungsgemäße Verwendung

Die Komponenten sind zum Einbau in elektrische Maschinen insbesondere Elektromotoren bestimmt und für den Einsatz in gewerblichen oder industriellen Anlagen vorgesehen. Der Einsatz im Ex/Schlagwetter- Bereich ist verboten. Die Komponenten sind entsprechend der in der Betriebsanleitung dargestellten Einsatzbedingungen zu betreiben. Die Komponenten dürfen nicht über die Leistungsgrenze hinaus betrieben werden.

8.2 Allgemeine Sicherheitshinweise

Eingebaute Bremsen haben gefährliche, spannungsführende und rotierende Teile sowie möglicherweise heiße Oberflächen. Alle Arbeiten zum Transport, Anschluss, zur Inbetriebnahme und regelmäßige Instandhaltung sind von qualifiziertem, verantwortlichem Fachpersonal nach EN 50110-1, EN 50110-2, IEC 60364-1 auszuführen. Unsachgemäßes Verhalten kann schwere Personen- und Sachschäden verursachen. Überall dort, wo auf Sondermaßnahmen und Rücksprache mit dem Hersteller verwiesen wird, sollte dies bereits bei der Projektierung der Anlage erfolgen. Bei Unklarheiten sind Drehmomente und deren Schwankung, Einbausituation, Verschleiß und Verschleißreserve, Schaltarbeit, Einlaufbedingungen, Lüftbereich, Umweltbedingungen und dergleichen im Voraus mit dem Hersteller der Komponenten abzustimmen. Ohne Abstimmung mit Kendrion (Villingen) dürfen keine Nachrüstungen, Umbauten oder Veränderungen an den Komponenten vorgenommen werden. Je nach Anwendungsfall sind die Unfallverhütungsvorschriften entsprechenden zu beachten. Die Komponenten "Sicherheitsbremsen" in dem Sinne, als dass nicht durch unbeeinflussbare Störfaktoren eine Drehmomentreduzierung auftreten kann.

8.2.1 Projektierung

Die zulässige Anzahl von Schaltungen/h und die max. Schaltarbeit pro Schaltung, besonders beim Einrichten von Maschinen und Anlagen (Tippbetrieb), It. Technische Daten sind unbedingt zu beachten. Bei Nichtbeachtung kann die Bremswirkung irreversibel reduziert werden und es kann zu Funktionsbeeinträchtigungen kommen. Die Nennbetriebsbedingungen beziehen sich auf die DIN VDE 0580. Die Schutzart auf die EN 60529. Bei Temperaturen unter -5°C und längeren Stillstandszeiten ohne Bestromung ist ein Festfrieren des Ankers an den Polflächen des Erregersystems nicht auszuschließen. In diesem Fall sind Sondermaßnahmen nach Rücksprache mit dem Hersteller erforderlich.

8.2.2 Inbetriebnahme

Die Komponenten dürfen nicht in Betrieb genommen werden, wenn

- die Leitungsanschlüsse beschädigt sind,
- die Ummantelung der Spule Beschädigungen aufweist,
- der Verdacht auf Defekte besteht.

8.2.3 Montage

Die Komponenten dürfen nur an Spannungsart und Spannungswert gemäß Typenschild (Leistungsschild) angeschlossen werden. Bei An- bzw. Einbau muss eine ausreichende Wärmeabfuhr sichergestellt sein. Zur Vermeidung unzulässiger Ausschalt-Überspannungen und sonstiger Spannungsspitzen sind geeignete Schutzmaßnahmen vorzusehen. Das Magnetfeld der Komponenten kann zu Störungen außerhalb der Bremse und bei ungünstigen Anbaubedingungen zu Rückwirkungen auf die Komponente führen. Im Zweifel sind die Anbaubedingungen mit dem Hersteller der Komponenten abzustimmen.

Um die Gefährdung von Personen, Haustieren oder Gütern infolge

- mittelbarer oder unmittelbarer Einwirkung elektromagnetischer Felder,
- Erwärmung der Komponenten,
- bewegter Teile

auszuschließen, sind vom Anwender geeignete Maßnahmen (DIN 31000; DIN VDE 0100-420) durchzuführen.

8.2.4 Betrieb/Gebrauch

Die stromführenden Teile, wie z.B. Steckkontakte oder Erregerwicklung dürfen nicht mit Wasser in Berührung kommen. Die Leitungsanschlüsse der Komponenten dürfen mechanisch nicht belastet (Ziehen, Quetschen, etc.) werden. Die Komponenten dürfen an den Reibflächen der Reibelemente nicht mit Öl, Fett oder sonstigen Flüssigkeiten in Berührung kommen, sonst fällt das Drehmoment stark ab und kann durch Reinigungsmaßnahmen nicht auf den ursprünglichen Wert zurückgeführt werden. Der Verschleiß der Bremse (nur bei Arbeitsbremsen) muss bei der Auslegung der Maschine bzw. Anlage berücksichtigt werden. Aufgrund der vielfältigen Umgebungsbedingungen ist die Funktionstüchtigkeit der Komponenten in den individuellen Anwendungsfällen zu prüfen. In Einsatzfällen bei denen die Bremse nur sehr geringe Reibarbeit verrichten muss, kann das Drehmoment abfallen. In solchen Fällen ist vom Anwender dafür Sorge zu tragen, dass die Bremse gelegentlich ausreichend Reibarbeit verrichtet. Die Komponenten sind mit einem Basiskorrosionsschutz ausgestattet, welcher die Lagerung und den Betrieb in trockener Umgebung (keine Betauung) sicherstellt.

Hinweis:

Der Umgebungstemperaturbereich für die Komponente muss der jeweiligen Offertzeichnung entnommen werden. Findet sich in der Offertzeichnung keine Angabe zum Umgebungstemperaturbereich, so gilt für die Komponente ein zulässiger Umgebungstemperaturbereich von -15°C bis +120°C, bei einer relativen Luftfeuchtigkeit von 30% bis 80% im Umgebungstemperaturbereich.

Achtung:

Bei Betrieb der Komponente darf die Spulentemperatur die zulässige Grenztemperatur für die verwendeten Isolierstoffe der spezifizierten "Thermischen Klasse" (siehe Tab. 25/1) nicht überschreiten. Eine schnelle Abkühlung der Erregerwicklung (Spule) z.B. durch Spülluft ist nicht zulässig. Der zulässige Bereich für die relative Luftfeuchte (siehe Tab. 26/2) muss eingehalten werden.

Achtung:

Eine max. Dauerschockbelastung der High Torque Bremse von 6g über die Lebensdauer von 20 000 Betriebsstunden ist zulässig. Die Schnittstellen Ankerbefestigung, Nabenbefestigung und elektrischer Anschluss obliegen der Anwenderzulassung. Eine Schwingungsbelastung mit einer max. Auslenkung von 1,5mm und einer max. Beschleunigung von 6g im Frequenzband von 10 bis 2000Hz ist zulässig.

Hinweis:

Für die Bremse, insbesondere für das Ankersystem, ist keine spezielle Klassifizierung der Wuchtgüte nach DIN ISO 21940-11 vorgesehen. Daher sind die Anforderungen an eine Wuchtgüte im Einzelfall zwischen Hersteller und Anwender abzustimmen.

Hinweis:

Der maximale Luftspalt s_{max} (siehe Tab. 25/1) darf über die gesamte Lebensdauer der Bremse nicht überschritten werden (siehe hierzu auch Kapitel 4 Wartung).

Hinweis:

Das übertragbare Drehmoment M₄ (siehe Tab. 25/1) wird erst nach Durchführung eines Einlaufvorganges (Einschleifen der Reibflächen, Einlaufparameter siehe Tab. 26/1 oder Tab. 26/2) sicher erreicht. Vor der Inbetriebnahme der Bremse ist ein Einlaufvorgang durch den Anwender der Komponente vorzunehmen.

8.2.5 Wartung, Reparatur und Austausch

Wartung, Reparaturen und der Austausch von Komponenten dürfen nur von Fachkräften gemäß EN 50110-1, EN 50110-2 bzw. IEC 60364-1) durchgeführt werden. Durch unsachgemäß ausgeführte Reparaturen können erhebliche Sach- oder Personenschäden entstehen. Bei jeder Wartung ist stets darauf zu achten, dass die Komponenten nicht unter Spannung stehen.

8.3 Verwendete Zeichen für Sicherheitshinweise

Personen- und Sachschäden							
Zeichen ur	nd Signalwort	Warnt vor	Mögliche Folgen				
	Gefahr	einer unmittelbar drohenden Gefahr	Tod oder schwerste Verletzungen				
	Warnung	möglichen, sehr gefährlichen Situationen	Tod oder schwerste Verletzungen				
<u></u>	Vorsicht	möglichen, gefährlichen Situationen	leichte oder geringfügige Verletzungen				
	Achtung	möglichen Sachschäden	Beschädigung der Komponente oder der Umgebung				
Hinweise	und Information	en					
Zeichen ur	nd Signalwort	Gibt Hinweise zum					
Hinweis		sicheren Betrieb und der Handhabun	ng der Komponente				

9. Definitionen der verwendeten Ausdrücke

(Basis: DIN VDE 0580: 2011-11 und Technische Kundenunterlage 86 611..P01, Auszug)

Das Schaltmoment M₁ ist das bei schlupfender Bremse bzw. Kupplung im Wellenstrang

wirkende Drehmoment.

Das Nennmoment M₂ ist das vom Hersteller dem Gerät oder Komponente zur Bezeichnung

oder Identifizierung zugeordnete Schaltmoment. Das Nennmoment M_2 ist der gemittelte Wert aus mindestens 3 Messungen des maximal auftretenden Schaltmoments M_1 nach Abklingen des Einschwing-

vorganges.

Das übertragbare Drehmoment M4, M4 120°C ist das größte Drehmoment, mit dem die geschlossene Bremse bzw.

Kupplung bei einer Umgebungstemperatur von 120°C ohne Eintreten

von Schlupf belastet werden kann.

Das statische Prüfmoment M_{4P} ist das größte Drehmoment, mit dem die geschlossene Bremse bzw.

Kupplung bei einer Umgebungstemperatur von 20°C ohne Eintreten von Schlupf im Neuzustand und nach vorschriftsmäßigem Einlauf belastet

werden kann.

Das Restmoment M₅ ist das über die geöffnete Bremse bzw. Kupplung noch weitergeleitete

Drehmoment.

Das Lastmoment M₀ ist das am Antrieb der geschlossenen Bremse bzw. Kupplung wirkende

Drehmoment, das sich aus dem Leistungsbedarf der angetriebenen

Maschinen für die jeweils betrachtete Drehzahl ergibt.

Die Schaltarbeit W einer Bremse bzw. Kupplung ist die infolge eines Schaltvorganges in der

Bremse bzw. Kupplung durch Reibung erzeugte Wärme.

Die Höchst-Schaltarbeit W_{max} ist die Schaltarbeit, mit der die Bremse bzw. Kupplung belastet werden

darf.

Die Schaltleistung P einer Kupplung ist die in Wärme umgesetzte Schaltarbeit je Zeiteinheit.

Die Höchst-Schaltleistung P_{max} ist die in Wärme umgesetzte zulässige Schaltarbeit je Zeiteinheit.

Die Einschaltdauer t₅ ist die Zeit, welche zwischen dem Einschalten und dem Ausschalten des

Stromes liegt.

Die stromlose Pause te ist die Zeit, welche zwischen dem Ausschalten und dem Wieder-

einschalten des Stromes liegt.

Die Spieldauer t₇ ist die Summe aus Einschaltdauer und stromloser Pause.

Die relative Einschaltdauer ist das Verhältnis von Einschaltdauer zu Spieldauer, in Prozenten

ausgedrückt (%ED).

Das Arbeitsspiel umfasst einen vollständigen Ein- und Ausschaltvorgang.

Die Schalthäufigkeit Z ist die Anzahl der gleichmäßig über eine Stunde verteilten Arbeitsspiele.

Die Schließzeit tc1 ist die Zeit bis die Bremse mechanisch geschlossen ist. Grafische

Darstellung siehe Abb. 24/1.

Die Aktivierungszeit tc2 ist die Zeit bis die Bremse mechanisch geschlossen und das

Haltemoment weitgehend aufgebaut ist. Grafische Darstellung siehe

Abb. 24/1.

Die Öffnungszeit t₀ ist die Zeit, bis die Bremse mechanisch offen ist. Grafische Darstellung

siehe Abb. 24/1.

 $\label{eq:continuous} \textbf{Der Ansprechverzug beim Einkuppeln } t_{11} \qquad \text{ist die Zeit vom Ausschalten des Stromes (bei \"{o}ffnendem System) bzw.}$

vom Einschalten des Stromes (bei schließendem System) bis zum

Beginn des Drehmomentanstieges.

Die Anstiegszeit t₁₂ ist die Zeit von Beginn des Drehmomentanstiegs bis zum Erreichen von

90% des Nennmoments M₂.

Die Einkuppelzeit t₁ ist die Summe aus Ansprechverzug t₁₁ und Anstiegszeit t₁₂.

Der Ansprechverzug beim Trennen t₂1 ist die Zeit vom Einschalten des Stromes (bei öffnendem System) bzw.

vom Ausschalten des Stromes (bei schließendem System) bis zum

Beginn des Drehmomentabfalls.

Die Abfallzeit t22 ist die Zeit vom Beginn des Drehmomentabfalls bis zum Erreichen von

10% des Nennmoments M₂.

Die Trennzeit t2 ist die Summe aus Ansprechverzug t21 und Abfallzeit t22.

Die Rutschzeit t₃ ist die Zeit vom Beginn des Drehmomentanstiegs bis zum Abschluss des Bremsvorganges bei Bremsen bzw. bis zum Erreichen des

Synchronisierungsmoments M₃ bei Kupplungen.

Die Einschaltzeit t₄ ist die Summe aus Ansprechverzug t₁₁ und Rutschzeit t₃ (Brems- bzw.

Beschleunigungszeit).

Der betriebswarme Zustand ist der Zustand, bei dem die Beharrungstemperatur erreicht wird. Die Temperatur des betriebswarmen Zustandes ist die nach DIN VDE 0580

ermittelte Übertemperatur, vermehrt um die Umgebungstemperatur. Wenn nichts anderes angegeben ist, gilt als Umgebungstemperatur eine

Temperatur von 35°C.

Die Übertemperatur Δ9₃₁ ist der Unterschied zwischen der Temperatur des elektromagnetischen Gerätes bzw. Komponente oder eines Teiles davon und der

Umgebungstemperatur.

Die Grenztemperaturen von Isolierstoffen für Wicklungen entsprechen der DIN VDE 0580. Die Zuordnung der

Isolierstoffe zu den Wärmeklassen erfolgt nach DIN IEC 60085.

Die Nennspannung U_N ist die vom Hersteller dem Gerät oder Komponente zur Bezeichnung oder Identifizierung zugeordnete Versorgungsspannung bei

Spannungswicklungen.

Der Bemessungsstrom I_B ist ein für die vorgegebenen Betriebsbedingungen vom Hersteller festgelegter Strom. Wird nichts anderes angegeben, bezieht er sich auf

Nennspannung, 20°C Wicklungstemperatur und gegebenenfalls auf die Nennfrequenz bei vorgegebener Betriebsart bei Spannungswicklungen.

des Gerätes oder der Komponente.

Die Bemessungsleistung P_B ergibt sich aus dem Bemessungsstrom bei Spannungsgeräten und

Spannungskomponenten und dem Widerstand R_{20} bei $20^{\circ}C$

Wicklungstemperatur.

Der Neuluftspalt s ist der Luftspalt, der beim Einbau der Bremse eingestellt werden muss.

Der maximale Luftspalt s_{max} ist der maximale Luftspalt, der sich während des Betriebes der Bremse,

aufgrund des Verschleißes ergeben darf. Beim Überschreiten des maximalen Luftspalts s_{max} (siehe Tab. 25/1) kann je nach Betriebszustand eine Einschränkung oder sogar der totale Verlust der

Bremswirkung (Bremsfunktion) eintreten.

Die Schaltzeiten sind nach DIN VDE 0580 definiert. Bei statischen Systemen (Haltebetrieb) wird alternativ zu DIN VDE 0580 die Schaltzeiten über den Stromverlauf (siehe Abb. 24/1) ermittelt.

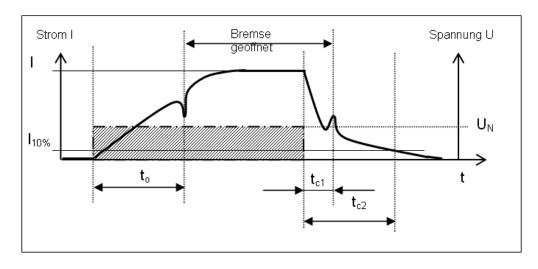


Abb. 24/1: Definition von Schaltzeiten für den Haltebetrieb (statisch)

10. Technische Daten

Komponente gebaut und geprüft nach DIN VDE 0580

	Größe					
	04	06	08	09	11	14
Übertragbares Drehmoment M ₄ , M _{4 120°C} [Nm] ¹⁾	2,5	9	15	22	60	80
Max. Drehzahl n _{max} [min ⁻¹]	10000	10000	10000	10000	10000	10000
Nennleistung P _{20°C} [W] ¹⁾	9	15	18	19	25	36,5
Schließzeit tc1 [ms] 1)	20	25	25	40	50	65
Öffnungszeit t _o [ms] ¹⁾	35	60	130	100	220	280
Trägheitsmoment Anker (mit Flanschnabe) J [kgcm²]	0,09	0,55	1,33	2,73	14,7	27,0
Gewicht m [kg]	0,25	0,65	1,15	1,25	3,1	4,4
Neuluftspalt s [mm]	0,15+0,1	0,2 +0,1	0,3 +0,1	0,27+0,1	0,4+0,1	0,3 +0,1
Max. Luftspalt s _{max} [mm] ²⁾	0,27	0,40	0,44	0,50	0,55	0,60
Einschaltdauer ED [%] ²⁾	100					
Standard-Nennspannung [VDC]	24					
Thermische Klasse ²⁾	F					
Verschmutzungsgrad ²⁾	2					
Schutzart 2)	IP00					
Betriebsart Haltebremse mit Notstopps						

Tab. 25/1: Technische Daten

	Größe					
	04	06	80	09	11	14
Anzahl Notstopps Z _{ges}	500	500	500	500	500	500
Anzahl Notstopps Z [h ⁻¹] (gleichmäßig verteilt) ²⁾	20	20	20	20	20	20
Max. Drehzahl (Notstopp) n [min ⁻¹] ²⁾	3000	3000	3000	3000	3000	3000
Max. zul. Massenträgheitsmoment J [kgm²]	0,0006	0,0056	0,0180	0,0111	0,0172	0,0294

Tab. 25/2: Zulässige Notstopps bei Haltebremsen mit Notstoppfunktion

¹⁾ Begriffsdefinition nach TKU 86 611..P01 (abweichend zu DIN VDE 0580).

²⁾ Angaben in der jeweiligen Offertzeichnung sind denen der Betriebsanleitung vorrangig.

Empfohlener Einlaufvorgang der High Torque Bremse mit unterschiedlichen Schutzbeschaltungen:

			Gri	öße		
	04	06	08	09	11	14
Drehzahl n [min ⁻¹]	200	120	100	100	100	80
Einschaltdauer t ₅ [s]	0,15	0,15	0,15	0,15	0,15	0,15
Stromlose Pause t ₆ [s]	0,15	0,15	0,15	0,2	0,2	0,2
Einlaufdauer t _{ges} [s]	30	30	30	30	30	30

Tab. 26/1: Einlaufvorgang der High Torque Bremse mit antiparalleler Diode (Freilaufdiode) als Schutzbeschaltung

			Grö	öße		
	04	06	08	09	11	14
Drehzahl n [min ⁻¹]	200	120	100	100	100	80
Einschaltdauer t ₅ [s]	0,2	0,2	0,2	0,2	0,25	0,25
Stromlose Pause t ₆ [s]	0,1	0,1	0,1	0,1	0,1	0,1
Einlaufdauer t _{ges} [s]	30	30	30	30	30	30

Tab. 26/2: Einlaufvorgang der High Torque Bremse mit Varistor Typ S14K30 als Schutzbeschaltung (andere Varistor-Typen können abweichende Taktzeiten erfordern)

	Nennbetriebsbedingungen
Spannungstoleranz der Nennspannung	±10%
Frequenzbereich	±1% der Nennfrequenz
Umgebungstemperatur 9 ₁₃ [°C]	-15 bis +120
Relative Luftfeuchte	30% bis 80% im Umgebungstemperaturbereich
Weitere klimatische Umweltbedingungen	3Z2 und 3Z4 nach EN 60721-3-3
Mechanische Umweltbedingungen	3M8 nach EN 60721-3-3
Biologische Umweltbedingungen	3B1 nach EN 60721-3-3
Mechanische aktive Stoffe	3S2 nach EN 60721-3-3
Chemisch aktive Stoffe	3C1 nach EN 60721-3-3
Aufstellhöhe	bis 2000m über N.N.

Tab. 26/3: Nennbetriebsbedingungen für High Torque Bremse

Hinweis:

Zum Angleichen und Abstimmen der Reibflächen ist grundsätzlich ein Einlaufvorgang notwendig. Durch den Einbau der Bremse in die Applikation kann es zu einer Beeinflussung der Reibpaarung kommen. Ein erneuter Einlaufvorgang ist daher auch bei werksseitig eingelaufenen Bremsen erforderlich. Nach dem Einlaufvorgang im Neuzustand sollte das statische Prüfmoment M_{4P} (analog jeweiliger Offertzeichnung) getestet werden. Soweit nicht anders angegeben, bezieht sich das Prüfmoment M_{4P} auf 20°C Magnet- und Spulentemperatur im eingelaufenen Neuzustand. Werden die spezifizierten Werte nicht erreicht, ist ein erneuter Einlaufvorgang (analog Tab. 26/1 oder Tab. 26/2) durchzuführen und das statische Prüfmoment M_{4P} zu testen.

Hinweis:

Erfahrungsgemäß werden die Drehmomente M_{4P}, M₄, M₄ 120°C nach spätesten 6 Einlaufvorgängen erreicht, anderenfalls ist die Bremse zu überprüfen (siehe Tab. 18/1) oder ggf. durch eine neue zu ersetzen.

Erläuterungen zu den Technischen Daten:

W_{max} (Höchst-Schaltarbeit) ist die Schaltarbeit, die bei Bremsvorgängen aus max. 3000min-1 nicht überschritten werden darf. Bremsvorgänge aus Drehzahlen >3000min-1 verringern die max. zulässige Schaltarbeit pro Schaltung erheblich. In diesem Fall ist Rücksprache mit dem Hersteller erforderlich. Die Höchst-Schaltleistung P_{max} ist die stündliche in der Bremse umsetzbare Schaltarbeit W. Die zulässige Anzahl Schaltungen (Notstopps) Z pro Stunde bei Haltebremsen und die sich daraus ergebende max. zulässige Schaltarbeit W_{max} ist der jeweiligen Offertzeichnung zu entnehmen. Bei abweichenden Anwendungen z.B. als Arbeitsbremse ist Abb. 27/1 zu verwenden. Die Werte P_{max} und W_{max} sind Richtwerte. Sie gelten für den Einbau ohne zusätzliche Kühlung. Die Schließzeit tc1 wird erreicht bei Betrieb mit 110% der Nennspannung, maximalem Luftspalt betriebswarmem Zustand (120°C) und bei Betrieb mit einem geeigneten Varistor. Die Öffnungszeit to wird erreicht bei Betrieb mit 90% der Nennspannung, kleinstem Neuluftspalt s und betriebswarmem Zustand (120°C). Die angegebenen Werte der Zeiten sind Maximalwerte. Die Einkuppelzeit t1 und die Trennzeit t2 gelten bei gleichstromseitiger Schaltung Bremse, der betriebswarmem Zustand, Nennspannung und Neuluftspalt. Dabei handelt es sich um Mittelwerte, die einer Streuung unterliegen. Bei wechselstromseitiger Schaltung der Bremse erhöht sich die Schließzeit tc1 bzw. Einkuppelzeit t_1 wesentlich. Die angegebenen übertragbaren Drehmomente M₄, M_{4 120°C} kennzeichnen die Komponenten in ihrem minimalen übertragbaren

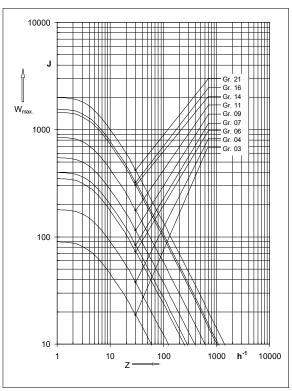


Abb. 27/1: Höchst-Schaltarbeit W_{max} pro Schaltung in Abhängigkeit von der stündlichen Schaltzahl Z (Werte gelten für n=3000min⁻¹)

Drehmoment (statistische Bewertung)³⁾. Die angegebenen Nennmomente M₂ kennzeichnen die Komponenten in ihrem Momentenniveau. Je nach Anwendungsfall weicht das Schaltmoment M₁ bzw. das tatsächlich wirkende übertragbare Drehmoment M₄ bzw. M₄ 120°c von den angegebenen Werten für das übertragbare Drehmoment M₄, M₄ 120°c bzw. Nennmoment M₂ ab. Die Werte für das Schaltmoment M₁ sind abhängig von der Drehzahl. Bei öligen, fettigen oder stark verunreinigten Reibflächen kann das übertragbare Drehmoment M₄, M₄ 120°c bzw. das Schaltmoment M₁ abfallen. Alle technischen Daten gelten unter Einhaltung der vom Hersteller festgelegten Einlaufbedingungen (siehe Tab. 26/1 oder Tab. 26/2) der Bremse.

Beim Betrieb der High Torque Bremse sind die Nennbetriebsbedingungen nach Tab. 26/3 zu beachten und einzuhalten. Bitte Offertzeichnung der entsprechenden Typen und die technischen Erläuterungen in der **Technischen Kundenunterlage TKU 86 611..P01** beachten!

Konstruktionsänderungen vorbehalten!

³⁾ Abweichende Definitionen in der jeweiligen Offertzeichnung möglich.

11. Artikelnummer und Typen- bzw. Komponentennummer

Die für die Bestellung und zur Beschreibung der eindeutigen Ausführung der Bremse relevante Artikelnummer, setzt sich aus Typen- bzw. Komponentennummer der Bremse und einer vierstelligen Variantennummer zusammen. Durch die vierstellige Variantennummer werden die möglichen Ausführungsvarianten der Bremse eindeutig beschrieben.

Beispiel:

Typen- und Komponentennummer: 86 61107P00 Variantennummer: 0001

Artikelnummer: 86 61107P00-0001

12. Fachwerkstätten für Reparaturarbeiten

Kendrion (Villingen) GmbH

Wilhelm-Binder-Straße 4-6 78048 Villingen-Schwenningen Tel. +49 7721 877-1417

Fax +49 7721 877-1462

13. Änderungshistorie

Ausgabedatum	Änderungen
15.11.2007	Neu.
18.02.2008	Betriebsanleitung inhaltlich überarbeitet.
15.05.2008	Betriebsanleitung inhaltlich überarbeitet.
30.12.2009	Betriebsanleitung inhaltlich überarbeitet.
23.06.2017	Normen aktualisiert (Niederspannungsrichtlinie, EMV-Richtlinie, etc.). Kapitel 1.4 EU-Konformitätserklärung, 11. Artikelnummer und Typen- bzw. Komponentennummer und 13. Änderungshistorie neu hinzugefügt. Kapitel 2. Produktbeschreibung, 3. Montage, Erläuterung zu den Technischen Daten und 12. Fachwerkstätten für Reparaturarbeiten überarbeitet. Allgemeines Layout (Design) der Betriebsanleitung geändert.
04.02.2019	Paramter für Einlaufvorgang in Tab. 26/1 geändert. Tab. 26/2, Einlaufvorgang mit Varistor als Schutzbeschaltung, hinzugefügt. Weitere mögliche Störungsursache in Tab. 18/1 hinzugefügt.
13.03.2020	Betriebsanleitung inhaltlich überarbeitet. Layout (Design) der Betriebsanleitung geändert.

Wilhelm-Binder-Straße 4-6 78048 Villingen-Schwenningen Germany

Tel: +49 7721 877-1417 Fax:+49 7721 877-1462

sales-ids@kendrion.com www.kendrion.com

